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’ INTRODUCTION

The advent of combinatorial chemistry has significantly con-
tributed to the rapid growth of the number of compounds and
various compound collections. Thus, it becomes increasingly
important to emphasize the importance of building high-quality
and structurally diverse screening collections for high-through-
put screening (HTS) or high-content screening (HCS).1 Although
modern HTS technologies can screen millions of compounds
more quickly and cheaply than ever before, it is still challenging
for a small pharmaceutical company or an academic institution to
cover the costs in the absence of significant funds. Moreover,
interrogating a large number of compounds generates unma-
nageable false positives. Thus, it is particularly necessary and
important to build high-quality compound screening sets for
some bioassays that have low screening throughput capacity or
are limited by the availability of key reagents (e.g., antibodies,
primary cells, or whole organism systems). In contrast to a large
combinatorial screening collection that targets structural varia-
tions for structure-activity relationship (SAR) studies, a high-
quality screening compound set built by rational acquisition of
structurally diverse compounds potentially improves the HTS/
HCS hit rate while preserving resources.

To build a compound collection for virtual screening or high-
throughput screening, an ideal strategy seeks balanced trade-off
between overall molecular diversity and the number of compounds.

Molecular diversity may be assessed by the variety of molecular
properties, which is encoded by molecular descriptors such as
physicochemical properties, topology index, or fingerprints.2

Enhancing molecular diversity or removing redundancy can be
achieved by four categories of approaches: cluster-based method,
dissimilarity-based method, cell-based method, and optimiza-
tion-based method.3 A cluster-based method is implemented to
assign compounds into groups so that compounds possess higher
within-group similarity than between-group similarity.4 Once
compound similarity is solved, a hierarchy-clustering algorithm,
such as neighbor joining, or nonhierarchy algorithm, such as
K-means, can be carried out for clustering. The motivation for
applying a chemical dissimilarity-based method is to maximize
the total dissimilarity between each pair of nearest neighboring
compounds.5 Relying on some linear or nonlinear binning
procedure, a cell based method aims to cover more cells with a
minimal number of compounds, categorizing compounds in the
same cell as similar.6 An optimization-based approach enhances
the diversity by optimizing the object function that may incor-
porate a set of descriptors to measure the molecular diversity in
different criteria.7 Although the approaches involving molecular
diversity are frequently mentioned, there is still no widely
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accepted quantitative procedure for the prioritization and acqui-
sition of new compounds to increase the structural diversity of an
existing compound collection.

Among various molecular descriptors, BCUT (Burden CAS
University of Texas) descriptors6,8 incorporate comprehensive
information regarding molecular structure, atom property and
more into decimal numbers. Creating BCUT descriptors is one
of the most popular approaches to construct a low-dimensional
chemistry space and perform diversity analyses. The perfor-
mance of BCUT descriptors has been validated through previous
QSAR studies9 and successful applications in library design.10

While BCUT descriptors demonstrate the relevance of generat-
ing a representative PubChem library11 and diversity analysis,12

we are expanding their use for the acquisition of new candidate
compounds from external compound collections, to optimize an
existing in-house screening set and increase its overall diversity.

In this manuscript, we present a compound acquisition and
prioritization algorithm established on the Euclidean distance in
the BCUT chemistry space. This method is validated using
weighted linear regression between the Euclidean distance and
similarity index. Results from two case studies demonstrate that
the selected subsets of external candidate compound collections
enhanced the overall chemical diversity of an existing in-house
screening collection, according to chemistry-space cell partition
statistics and similarity index. Discussions are also presented on
distance cutoff value and disagreement between the chemistry-
space distance and similarity index. The algorithm provides
useful information to facilitate decision-making for acquiring
new candidate compounds and prioritizing compound syntheses.

’EXPERIMENTAL METHOD AND CALCULATION

BCUT Chemistry Space and Compound Acquisition Pro-
tocol. The established compound acquisition and prioritization
algorithm is based on BCUT chemistry-space calculation using
the protocol reported.11 Briefly, BCUT descriptors6 are defined
by combining atomic descriptors for each atom and description
of the nominal bond-types for adjacent and nonadjacent atoms
into BCUT matrices. The value of each chemistry-space coordi-
nate is specified as the highest or lowest eigen-value of the BCUT
matrix. In our study, the Diverse Solutions program (Tripos
Sybyl 8.0)13 was used to generate a set of default 2D BCUT
descriptors that covered different scaling factors and atomic
properties, including H-bond donor, H-bond acceptor, partial
charge, and polarity. The optimal combination of descriptors
was selected automatically by the program to construct the
BCUT chemistry space, with the restriction that the correla-
tion coefficient between any pair of BCUT descriptors was less
than 0.25.
The computational protocol of the compound acquisition and

prioritization algorithm using chemistry-space distance calcula-
tion is summarized below:
(1) Initialization: define the BCUT chemistry space and specify

a distance cutoff value, c based on Distance Threshold
calculated below.

(2) Iteration: for each compound, j, in the candidate com-
pound collection,

(a) Calculate its distance to the nearest neighbor from the
current compound collection, S:

Dj ¼ min
i

jyj � xij

yj is the descriptor vector of candidate compound j,
and xi is the descriptor vector of compound i in the
current compound collection, S.

(b) If the distance to the nearest neighbor Dj > c, then
add the compound j into the current compound set:
SrS þcandidate compound j.

(c) Go to step 2 to analyze next candidate compound.
This method is rationally justified through the correlation

studies between Euclidean distance in the BCUT chemistry
space and Tanimoto coefficient from MACCS key finger-
prints. The results are given later. More information regarding
the implementation of the regression analysis, acquisition
algorithm, and distance threshold can be found at Supporting
Information Part I.
Distance Threshold. By default, the distance cutoff value, c, is

defined as the estimated density of the existing compound
collection according to the equation,

c ¼ 1
N ∑

N

j¼ 1
mini, i 6¼j jxi � xjj

where i, j are the compound indices for the existing collection.
The density indicates how well the chemistry space was explored
or exhausted in the previous experiment. Thus, the new candi-
date compounds are also expected to cover the chemistry space
in a similar pattern. Figure 1 illustrates how the density of an
existing compound collection affects the choice of acquired
compounds. Candidate compounds with large distance to their
nearest neighbors in the existing collection are considered
dissimilar to the compounds in the existing collection, and such
candidate compounds are recommended for acquisition (like
points “a” and “b” in Figure 1A). On the other hand, the candi-
date compound, “c” in Figure 1A, is excluded from the acquisi-
tion list because of its short distance to its nearest neighbor, “d”.
However, the compound, “f” in Figure 1B, is still to be acquired,
although the distance to its nearest neighbor “e” is almost the
same as the distance between “c” and “d” (Figure 1A). The
different acquisition decisions for similar circumstance can be
explained by the density of two existing compound collections. In
Figure 1A, the established compound data set may be primarily
designed to search the chemistry space sparsely. The high-
density data set in Figure 1B may explore the chemistry space
more thoroughly. Therefore, the decision-making relies on the
profile of the existing compound collection. In this method, the
default distance threshold is equal to the density of the existing
compound collection.
Molecular Diversity Analyses. A structurally diverse com-

pound collection is expected to cover well-defined chemistry
space uniformly. The chemical diversity of a compound data set
may be measured in a binning procedure.14 The binning proce-
dure is used to generate “cells” in a multidimensional descriptor
space. Each dimension is divided uniformly into a finite number
of “bins”. The bin-definition defines multidimensional “cells”,
which cover the entire space. The chemical diversity could be
accessed by counting the number of filled cells. As illustrated in
Figure 2, the concepts regarding a bin and a filled or void cell are
given in a hypothetical plot of two-dimensional BCUT chemistry
space. As shown in the plot, the acquired compound filling a void
cell is believed to increase the overall structural diversity. On the
other hand, the new compound in the cell that already has
compounds (red dots) from the existing compound collection
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does not contribute to increase structural diversity and is not
recommended to be acquired or purchased.6

In this study, four-dimensional instead of two-dimensional
chemistry-space was constructed. The entire space was parti-
tioned into 1004 cells with the same volume by dividing each axis
into 100 bins equally. Each cell was indexed by (I1, I2, I3, I4).
Indices Ik were integers ranging from 0 to 99. A cell indexed by
(I1, I2, I3, I4) represented a subspace R(I1, I2, I3, I4) = { (x1, x2, x3,
x4): Ik � 0.1 e xk< Ik � 0.1 þ 0.1, k = 1, 2, 3, 4 }. Finally the
number of filled void cells by candidate compounds was sorted
out to describe diversity increment.
Candidate compounds could also be compared to an estab-

lished compound collection to characterize the degree of simi-
larity between two compound data sets, according to molecular
fingerprint. This approach measures how closely the candidate
compounds are represented in the existing compound collection

by Tanimoto coefficient.15 The degree of similarity between
candidate compounds and the existing compound collection was
evaluated by Database Comparison program (Tripos Sybyl)
based on UNITY fingerprint, as described below.

’RESULTS AND DISCUSSION

Similar to other drug screening centers or institutes, the
University of Pittsburgh Drug Discovery Institute (UPDDI)
faces the issue of building a high-quality chemical library in
terms of library size and structural diversity associated with the
cost of purchasing and storage. In this section, the rationality of
the compound acquisition and prioritization algorithm, together
with its application, is presented through guiding candidate com-
pound acquisition to increase diversity of the current PMLSC
screening set that contains 230k compounds from the Pittsburgh
Molecular Libraries Screening Center (PMLSC, pmlsc.pitt.edu).
For this illustration, two commercial libraries, TimTec 3k Natural
Derivatives Library (NDL)16 and TimTec 2k Active Probes
Library (APL) were selected as candidate compound collections,
from which compounds were prioritized and selectively depos-
ited into the PMLSC screening set.

Four atom properties (partial charge, polarity, H-bond donor,
and H-bond acceptor in diagonal elements) were considered to
calculate BCUT. According to the PMLSC screening set, the best
combination of scaling factor and the choice of eigen-value were
selected to construct chemistry space. The value of each BCUT
descriptor was scaled to range from 0 to 10. The distribution of
each BCUT descriptor of the PMLSC screening set is shown in
Figure 3, and the specifications of BCUT descriptors are listed in
Table 1. The correlation coefficient, r2, between any pair of
dimensions was less than 0.11, suggesting that every dimension
independently described different aspects of molecular properties.

In the compound selection or prioritization algorithm, high
acquisition priority was assigned to the candidate compounds
that had large chemistry-space distances to their nearest neigh-
bors in the existing compound collection. For the validation of
this method, 1991 pairs of compounds were selected sequentially

Figure 1. Graphic representation of the BCUT chemistry space to illustrate the concept and effect of the density of an existing compound collection.
The compound collection with low density (A) sparsely covers the BCUT chemistry space, while the one with high density (B) exhausts the chemistry
space more specifically. The choice of distance cutoff value depends on the density of the existing compound collection.

Figure 2. Graphic representation of two-dimensional chemistry space
and filled/void cells to illustrate the analysis of the diversity increment
attributed by the candidate compounds (blue dots), in comparison with
the compounds (red dots) from the existing compound collection.
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from the Active Probes Library (APL) to study the correlation
between Tanimoto coefficient (Tc) and chemistry-space dis-
tance through weighted linear regression. MACCS17 key molec-
ular fingerprints were then generated to calculate the Tanimoto
coefficient for these compounds pairs, and their chemistry-space
distances were evaluated in the chemistry space defined by
PMLSC screening set. Figure 4A displays the scatter plot of the
raw Euclidean distance in chemistry space and the calculated
Tanimoto coefficient (Tc) similarity score of 1991 pairs of
compounds in APL. The Tc values of 1991 compound pairs
range from 0.023 to 1.000 and their distances range from 0.002
to 12.824.

For a correlation study, the distance in chemistry space was
transformed to normalize its variance as a functionofTc (Figure 4B).
As fingerprints were developed to measure compound similarity

instead of dissimilarity,6 weighted regression was performed to
emphasize the significance of high Tc values. Figure 4B shows the
scatter plot of 2 � (D)1/2 (D: chemistry-space distance along
y-axis) and Tanimoto coefficient (Tc along x-axis) of 1991 pairs
of APL compounds together with the fitted regression line. The
regression equation was then solved as:

2� ffiffiffiffi
D

p ¼ Rþ β� Tc

where R = 6.13, β = �5.23; and the correlation coefficient, r2,
was 0.61.

The corresponding normal Q-Q plot of regression residuals is
shown in Figure 4C. The Q-Q plot is an effective technique to
examine the distributions of two sets of samples by plotting
quantiles against each other. According to the Q-Q plot, the
distribution of regression residuals that were the difference
between fitted values and corresponding observed values was
close to a standard normal distribution, allowing for hypothesis
testing to examine the correlation of those two variables. Based in
Figure 4B, hypothesis testing resulted in a two-sided p-value
<0.0001, which was strongly against the null hypothesis β = 0 and
favored the alternative hypothesis β 6¼ 0 . This statistical result
suggested a fine negative correlation between the chemistry-
space distance and Tanimoto coefficient calculated by MACCS
fingerprint. Therefore, candidate compounds with large dis-
tances to their nearest neighbors were expected to be dissimilar
to the compounds in the existing compound collection, and
acquiring such compounds would efficiently enhance the overall
chemical diversity.

Despite favorable correlations, discrepancies still existed
between chemistry-space distance and Tc, as illustrated by five
pairs of labeled outliers in Figure 4A. The structures of the
compound pairs are listed in Table 2. MACCS fingerprint based

Figure 3. Distribution of four chemistry-space descriptors for the PMLSC screening set, showing (a) the histograms of atomic partial charge descriptor,
(b) H-bond acceptor descriptor, (c) H-bond donor descriptor, and (d) polarity descriptor.

Table 1. Specifications of BCUT Descriptors for Construct-
ing Four-Dimensional Chemistry Space

diagonal

element

off-diagonal

element

scaling

factor

remove (R)

or keep (K)

hydrogen

use lowest (L)

or highest (H)

eigen-value

GasTchrg

(Atomic

Charge)

Burden 0.1 R H

Haccept

(HBA)

Burden 0.9 R H

Hdonor

(HBD)

Burden 0.75 R H

Tabpolar

(polarity)

Burden 0.5 R H
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similarity Tc calculation did not detect the structural difference
for the compound pair 1 (AP-49 and AP-50), showing a Tc value

of 1.0 (Table 2). However, the distance between them was
considered to be relatively large (distance = 1.16) in the BCUT
chemistry space, which could reflect different π-conjugated
systems between two compounds. The subtle feature is some-
times important for biological activities. On the other hand, the
compound pair 2 (AP-526/AP-527) and pair 3 (AP-230/
AP-231) were quite similar with reported distance of 0.031 and
0.095, respectively, while the Tc value was less than 0.85,
indicating structural difference between them. The large dis-
tances between compound pair 4 and pair 5 (distance = 6.65 and
4.61, respectively) were essentially due to the BCUT polarity
descriptor. For example, the calculated electric dipole of com-
pound AP-1665 was 2.61 D, while the dipole of AP-1666 was
5.34 D (according to original structure and Gasteiger�H€uckel
charge). Thus, BCUT descriptors characterize structural topol-
ogy together with atom properties and possess certain advan-
tages for constructing a low-dimensional chemistry space, com-
pared to the molecular fingerprint.

The distribution of distances between all pairs of nearest-
neighboring compounds in the PMLSC screening set is shown in
Figure 5A. The probability density function (Figure 5B) of the
exponential distribution was fit to the normalized histogram:

f ðxÞ ¼ 1
λ
exp � x

λ

� �
; λ ¼ 0:072589, x g 0

Thus, the expectation of distance between one pair of nearest-
neighboring compounds was 0.072. As shown Figure 5B, λ could
be regarded as the density of an existing compound collection, so
λ was the default threshold for compound selection. In the
present case, the distance threshold value, c, was equal to 0.072.

For comparison, different subsets of commercial compound
collections (NDL and APL) were generated and compared to the
current PMLSC screening collection, with the intention to justify
the compound acquisition method. As shown in Table 3, 1648
compounds from NDL (NDL-B) and 1096 compounds from
APL (APL-C) were selected according to the acquisition protocol,
using a distance threshold of 0.072. Alternatively, the top 1000 and
500 compounds were selected to create another two subsets,
NDL-C and NDL-D, respectively, after ranking NDL compounds
descendingly according to their distances to the nearest neighbors
from the PMLSC screening set. The same strategy was also applied
to select 1500 and 500 APL compounds (APL-B and APL-D).

Figure 4. (A) Scatter plot between the Euclidean distance in BCUT chemistry space and Tanimoto coefficient (Tc) of 1991 pairs of compounds in
Active Probes Library (APL). The fitted regression line and five labeled outliers are also shown. The Tanimoto coefficients are calculated according to
MACCS fingerprint; (B) the scatter plot of Tanimoto coefficient (Tc) and transformed Euclidean distance for the 1991 pairs of APL compounds with the
weighted regression line.Theweight for each point is its Tc value. (C)TheQ-Qplot for regression residuals, the theoretical quantile is standardnormal quantile.

Table 2. Five Pairs of Compounds Illustrate SomeOutliers in
Figure 4A
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To investigate the correlation between chemistry space dis-
tance and Tc in a larger scale, the whole NDL, APL, and their
subsets were compared to the PMLSC screening set using the
Database Comparison program. It is worth pointing out that the
Database Comparison program characterizes the degree of over-
lapping between two compound collections using the UNITY
fingerprint and the Tanimoto coefficient. As subsets NDL-C,
NDL-D, APL-B, and APL-D were not created by the compound
acquisition protocol, they might possess high intrasubset simi-
larity. However, the Database Comparison program was used to
examine the between-collection similarity, that is, comparing
NDL or APL subsets to the PMLSC screening set, to show the
effect of chemistry space distance on the Tanimoto similarity
index. Table 3 summarizes the sample mean and standard devia-
tion of Tc values for different NDL and APL subsets, when
compared to the PMLSC screening set. As shown in the table, the
subset NDL-A, the whole NDL, possesses average Tc of 0.8593 in
comparison to the PMLSC screening set, whereas the subsets,
NDL-B, NDL-C, and NDL-D, have average Tc values of 0.8211,
0.8071, and 0.7851, when the number of acquired compounds is
1648, 1000, and 500, respectively. A similar trend is also observed
with the APL, which possesses an average Tc value of 0.8134 to the
PMLSC collection. The average Tc values between the APL subsets
and the PMLSC collection decrease from 0.8134 to 0.7004, as the
size of acquired compounds is reduced from 2000 to 500.

The Database Comparison program calculates the Tanimoto
between all candidate compounds and their nearest neighboring

compounds in the PMLSC screening set. Thus, a set of
Tanimoto coefficients were reported after comparing NDL or
APL to the PMLSC screening set, and a histogram was created to
examine the distribution of these Tc values. The distributions of
Tc values are plotted in Figure 6A for NDL subsets and Figure 6B
for APL subsets. In Figure 6A, the solid line represents the
density profile of Tc values between all the NDL compounds and
their most similar counterparts in the PMLSC compound
collection in 0.01 intervals. While the data shows 12% NDL
compounds with Tc = 1.0 to the PMLSC screening set (data
point not shown in Figure 6A), the peak of the curve is around
Tc = 0.91, indicating a relatively large portion of NDL com-
pounds with Tc = 0.91. The distributions of Tc values fromNDL
subsets with size 1648, 1000, and 500 are represented by a dashed
line, a dotted line, and a dash-dotted line, respectively. Any of the
three subsets contains less than 1% of compounds that possess
Tc = 1.0 to the PMLSC collection. As the size of NDL subsets
decreases from 3000 to 500, the distribution shifts to the lower
Tc value, indicating that smaller subsets tend to be increasingly
dissimilar to the PMLSC screening set.

Figure 6B reveals a similar pattern for APL. 15% of APL
compounds have Tc = 1.0 to their most similar counterpart in the
PMLSC collection, while none of APL-B, APL-C, and APL-D
possesses more than 1% of Tc that is 1.0 (data point not shown in
the Figure). The peaks also shift toward the lower value of Tc as
the size of APL subsets decreases. In general, the correlation
between subset size and Tc distribution can be explained by the
regression study as shown in Figure 4 above. Figure 4 reveals the
negative correlation between Tc values and chemistry-space
distance. In other words, the Tc value between a pair of com-
pounds tends to decrease as their chemistry-space distance
increases. As the NDL or APL candidate compounds were
selected according to the distances to their nearest neighbors, the
smaller subset had a larger average distance to the PMLSC
screening set. Thus, the smaller subset tended to be dissimilar to
the PMLSC compound collection, even if the similarity score was
calculated by the Database Comparison program based on the
UNITY fingerprint (Figure 6 and Table 3). While any novel
candidate compounds would add certain structural diversity to
an existing compound collection, the amount of to-be-acquired
candidate compounds should be carefully determined to balance
the quality and quantity through the choice of distance cutoff

Figure 5. (A) Histogram of the distances between nearest neighboring compounds in the existing screening collection. (B) The normalized histogram
with fitted exponential probability density function (PDF). The default distance cutoff value is 0.072.

Table 3. Average and Standard Deviation of Tc for Different
NDL and APL Compound Subsets, Compared to the PMLSC
Screening Collectiona

Natural Derivatives Library Active Probes Library

subset size

mean/stdev

Tanimoto subset size

mean/stdev

Tanimoto

NDL-A 3000 0.8593( 0.11 APL-A 2000 0.8134( 0.15

NDL-B 1648 0.8211( 0.11 APL-B 1500 0.7636( 0.13

NDL-C 1000 0.8071( 0.11 APL-C 1096 0.7460( 0.13

NDL-D 500 0.7851( 0.12 APL-D 500 0.7004( 0.13
aThe Tanimoto coefficients are calculated by the Database Comparison
program that is based on UNITY fingerprint.
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value. The density of an established compound collection is the
recommended distance cutoff value, because it reflects how the
compound data set explores the chemistry space. Furthermore,
the chemistry-space distance between identical compounds is
zero, because identical compounds have the same coordinate
values. Import of any duplicate candidate compounds into the
PMLSC screening set is avoided by applying an appropriate
distance cutoff value. For example, 12% of compounds in NDL
were duplicates to the PMLSC screening set and removed from
the wish list. However, in our case studies, less than 1% of
compounds present in NDL-B, NDL-C, and NDL-D possessed
Tc = 1.0 to the PMLSC screening set. This is because a pair of
compounds possessing Tc = 1.0, such as the compound pair 1
(AP49/AP50) from Table 2, may not necessarily be identical.

The similarity assessment from the Database Comparison
program described the degree of overlapping between two
compound collections, yet it was unable to provide a quantita-
tive measure of the overall diversity increment. Therefore, a
“binning” procedure described inMethods section was applied to
the BCUT chemistry space for diversity assessment. For the
binning procedure, the bin size was required to determine the
volume of “cells” in chemistry space. A large bin size would
reduce the sensitivity of diversity measurement, whereas a small
bin size would trap most candidate compounds in void cells and
make counting the filled void cells meaningless. A reasonable bin
size could be determined in consideration of the size and density
of an existing compound collection, or the regression analysis
illustrated in Figure 4. For this study, the size of one bin was set to
0.1, which was at the magnitude of the density of the PMLSC
compound collection.

Figure 7 visualizes the number of filled void cells by applying
the established compound acquisition and prioritization algo-
rithm and gradually relaxing the threshold distance value, c, until
all the NDL and APL compounds were deposited into the
PMLSC screening set. The X-axis denotes the number of the
deposited compounds, while the Y-axis denotes the number of
void cells filled by the corresponding compounds. Figure 7 shows

an approximate linear growth of the number of filled cells (dotted
lines), when less than 1500 NDL compounds or less than 1000
APL compounds are deposited into the PMLSC screening set
(data points circled in Figure 7). At the early stage, the deposited
candidate compounds surely filled a void cell because of the large
distance to their nearest neighbors in the PMLSC compound
collection. As the number of acquired compounds increased,
newly acquired ones tended to be closer to their nearest-neigh-
bors, and some of them might be located in the same cells where
some PMLSC compounds were already present. As the circled
points marked in Figure 7, the derivative of the number of filled
cells began to decrease after acquiring more than 1500 NDL
compounds or 1000 APL compounds, respectively. Subsequently,
fewer and fewer void cells were filled as more candidate com-
pounds were acquired. Finally, the number of filled cells reached
a plateau after depositing approximately 2500 NDL compounds
with 1844 filled void cells, and 1500 APL compounds with 1290
filled void cells. For comparison, candidate compounds from
NDL and APL were sequentially merged into the PMLSC com-
pound collection. Because the candidate libraries and the
PMLSC screening set were prepared independently for the
calculation, there was an equal probability to fill a void cell by
any NDL or APL compound.

A close analysis of plots in Figure 7 also reveals that the solid
lines, representing the number of filled cells under the sequential
compound acquisition, demonstrate nearly linear growth with
the number of candidate compounds. The dashed lines in Figure 7
represent the difference in the number of filled cells between the
established compound acquisition method and the sequential
compound selection. The dashed lines reached the plateau when
approximately 1700 NDL compounds and 1200 APL com-
pounds were acquired. After the plateau of the dashed lines,
the diversity analysis showed that the low priority compounds
did not significantly fill the void cells or increase the diversity of
the PMLSC screening set. Consequently, the plateau indicated
the optimal number of compounds to be acquired under the
current chemistry space binning procedure. This conclusion was

Figure 6. (A) Distribution of Tanimoto coefficient (Tc) values for four NDL subsets: NDL-A with 3000 compounds, NDL-B with 1648 compounds,
NDL-C with 1000 compounds, NDL-D with 500 compounds; (B) The distribution of Tanimoto coefficient (Tc) values for four APL subsets: APL-A
with 2000 compounds, APL-B with 1500 compounds, APL-C with 1096 compounds, APL-D with 500 compounds. The Y-axis is the percentage of
Tanimoto values that fall into every 0.01 interval.
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also supported by the number of acquired compounds with the
default distance threshold, which instructed us to acquire 1648
compounds from NDL and 1096 compounds from APL.

The compound acquisition algorithm is established on various
BCUT descriptors. In certain circumstances, some additional
procedures are necessary to ensure that the to-be-acquired com-
pounds are of biological or pharmacological interest. Supporting
Information Part II exemplifies the explicit removal of com-
pounds with undesired properties, using Lipinski’s Rule of Five18

and filter for Pan Assay Interference Compounds (PAINS).19

The Rule of Five takes “drug-likeness” into account, and the
PAINS filter removes compounds that tend to interfere in assay
signaling. Beyond these, other selection standards may be designed,
depending on the research objective.

’CONCLUSIONS

Through the application of BCUT descriptors, we have con-
structed a multiple dimensional chemistry space for compound
acquisition and prioritization. As pointed out above, high-quality
diverse compound collections play a significant role in virtual
screening and HTS/HCS campaigns. In general, a structurally
diverse library, or representative subset, is constructed directly or
indirectly from compound collections to minimize the experi-
mental bioassay costs, but this may result in a failure to identify
active compounds or promising “leads”, namely, false negatives.
Thus, thoughtfully expanding the screening sets and testing these
newly acquired compounds provide opportunities to cover more
structural chemistry space, while avoiding duplicating the testing
of structurally similar compounds. However, the acquisition of

candidate compounds should be performed in carefully designed
chemistry space that is within a biological meaningful context,
because the interpretation of “diversity” is directly determined by
chemistry-space coordinates. Cautions should be taken that
solely blinded pursuit of structural dissimilarity may bring in
irrelevant compounds and impair the outcome of virtual screen-
ing or high-throughput screening.

In the compound acquisition protocol, candidate compounds
are acquired or deposited into an existing compound collection
according to the Euclidean distance in the BCUT chemistry
space. To rationalize this approach, a regression analysis was
carried out to model the correlation between chemistry distance
and Tanimoto coefficient based on MACCS key. Statistical
results indicated negative correlation between the two variables,
supporting the conclusion that a pair of compounds tended to be
dissimilar if the chemistry distance between them was large.
Different sizes of NDL and APL subsets were then generated and
compared to the PMLSC screening set to show the correlation
between Tanimoto similarity index and chemistry space distance
in a compound collection scale. Next, the diversity assessment
was implemented to demonstrate how the number of filled void
cells grew along with the number of acquired candidate com-
pounds using either sequential selection or the compound
acquisition protocol. We also wanted to point out that the choice
of bin size would affect the diversity assessment as discussed
above. The result illustrated the diversity increment by importing
candidate compounds and helped to determine the optimal
number of acquired compounds in a specific binning procedure.

Taken together, the compound acquisition and prioritization
algorithm using BCUT descriptors is capable of retrieving

Figure 7. Plots of the number of filled void cells as a function of the number of candidate compounds that are selected sequentially or acquired by the
compound acquisition method. Plot (a) is for NDL compounds and plot (b) is for APL compounds.
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compounds from candidate compound collections to increase
structural diversity of an existing compound data set. Currently,
this method is being used for prioritizing to-be-synthesized
combinatorial libraries to enhance the diversity-oriented library
design and synthesis; however, it could also be viewed as a
necessary complement to the existing techniques for building
quality chemical libraries for HTS/HCS and virtual screening.

’ASSOCIATED CONTENT
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